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The spectrum of instantaneous normal modes has been evaluated by molecular dynamics simula-
tion for cesium in liquid and glassy states. The velocity autocorrelation function derived from the
real-frequency part of the spectrum compares favorably with that calculated directly from simulation
data, especially for the glassy state. We have pushed this comparison to the first memory-function
level. It appears that the normal-mode analysis gives the correct short-time behavior, where corre-
lated binary collisions play an important role. Such agreement extends toward intermediate times
in the glassy state, where solidlike features are manifested by strong oscillations.

PACS number(s): 61.20.Lc, 61.25.Mv

In recent years, the interpretation of the dynamical
properties of disordered systems (liquids and glasses) in
terms of instantaneous normal modes (INM’s) has at-
tracted considerable attention [1-3]. Although such an
approach can only provide quantitative descriptions of
the short-time behavior of the correlation of any dynam-
ical variable, some attempts have been made towards
the characterization of the overall time behavior from
knowledge of the INM spectrum [2,3]. The portion of
the spectrum corresponding to “unstable” modes, that
is, those with imaginary frequencies, is known to lead to
divergences of the correlation functions, and has been re-
lated to some thermostatic properties, e.g., the average
potential energy and the constant-volume heat capacity
[2(e)], or even to some long-time property such as the
self-diffusion coefficient [1]. On the other hand, relevant
information regarding the microscopic dynamics at short
times, and especially that regarding collective motions,
is contained in the spectrum of “stable” (real-frequency)
modes.

This communication reports the results of a molecular
dynamics (MD) investigation of alkali metals in liquid
and glassy states, a choice stemming from experimen-
tal evidence showing that even after melting they can
support collective excitations at wavelengths as short as
the average separation between neighboring atoms [4,5].
The choosing of such a system was also motivated by the
existence of clear scaling behavior for both static and dy-
namical properties [6], which enables one to extend the
conclusions to all the other alkali metals.

A system of 250 Cs atoms in a cubic box of length L
= 31.1 A (corresponding to a density = 1.83 gcm™3)
at a temperature 7' = 308 K (close to the melting tem-
perature) interacting via the potentials described in [7]
was simulated by means of MD techniques. The spec-
trum of INM’s was calculated from the eigenvalues of
the Hessian matrix for a particular configuration during
the MD run, repeating the procedure for 100 configura-
tions and eventually performing an average. As is cus-

1063-651X/95/51(3)/2654(4)/$06.00 s1

tomarily done, the part of the frequency spectrum cor-
responding to negative eigenvalues leading to imaginary
frequencies (unstable modes) is drawn on the negative
frequency axis as shown in Fig. 1. As a first comment,
a comparison with results regarding Lennard-Jones (LJ)
systems [2(a),2(b)] serves to illustrate the sensitivity of
the spectra to the model potential. In particular, the lobe
of imaginary frequencies is strongly reduced for the alkali
metals, indicating that the number of unstable modes is
sensibly lower, and also the distribution of real frequen-
cies becomes more symmetric, showing a more reduced
high frequency tail. A relatively small fraction of unsta-
ble modes was also found in studies on some other more
complicated cases such as liquid water by Cho et al. [1].

The Einstein frequency wg = 4.38 ps™! is close to that
where the distribution attains its maximum, and almost
equal to half the maximum frequency represented in the
spectrum. A similar comparison for the LJ system (where
wg = 7.7 ps~!) shows that this characteristic frequency
is still close to the frequency of the maximum of the dis-
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FIG. 1. Spectrum of the instantaneous normal modes
N(w) for Cs liquid near the melting point (solid line) and
in the glassy state at T = 20 K (vertical bars). Both func-
tions are normalized to unit area. On the negative z axis are
represented the imaginary frequencies. The contribution of
the translational modes at w = 0 has been subtracted.
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tribution but located at very low frequency with respect
to the maximum extent of the spectrum. This can be
attributed to the more harmonic character of the oscilla-
tions undergone by the Cs atoms. This behavior is even
more emphasized, as also shown in the figure, if the sys-
tem is brought into a glassy state by a rapid quench down
to = 20 K, which brings the final configuration close to a
local minimum of the potential energy. As seen by com-
parison of the spectra for liquid and glass, the number
of unstable modes strongly decreases upon vitrification,
also leading to an increase in the frequency of the maxi-
mum and to a further reduction in the amplitude of the
high frequency tail. In other words, a more symmetric
spectrum of INM’s with respect to its maximum devel-
ops after glassification. Similar features, observed even
in the LJ system explored by Seeley and Keyes [2(a)],
have been interpreted as a consequence of the fact that
the atoms undergo a more harmonic motion when they
are found close to a potential minimum.

As is well known, the attempt to reconstruct the veloc-
ity autocorrelation function (VACF) from the INM spec-
trum is deemed to fail for at least two intrinsic reasons.
First, because the VACF spectrum has a normalized sec-
ond moment which only coincides with that of the INM if
the negative eigenvalues are taken into account. There-
fore a VACF derived from the real part of the spectrum is
expected to have a faster decay at short times. Secondly,
the total area under this VACF is by definition equal to
zero since at w = 0 the INM spectrum is zero. As a mat-
ter of fact, the VACF obtained in this way represents the
single particle motion in a system in which the diffusion
is forced to be zero since the atoms undergo only local
oscillations. However, the information contained in such
a VACF can be of help in modeling the overall single par-
ticle dynamics, as pointed out in [1] and more recently
demonstrated by Keyes and co-workers [1], particularly
in liquid alkali metals which show clearly solidlike fea-
tures. The VACF calculated by Fourier transforming the
positive lobe of the INM spectrum is compared with that
obtained directly by the MD simulation in Fig. 2 for the
liquid and glass states. The agreement between the two
correlation functions is very good, taking account of the
limitations referred to, the INM spectrum being able to
reproduce the VACF behavior up to 1 ps in the liquid
phase and even better (up to 1.5 ps) in the quenched
system. Again, a comparison with similar results for the
LJ system reported in Ref. [2(c)] [Figs. 3(a) and 3(b)
of that reference] shows that liquid alkali metals seem
a more natural benchmark with which to contrast the
INM results than the highly anharmonic LJ systems. As
a matter of fact, the VACF calculated from the spec-
trum of stable modes for LJ systems, whether in normal
or supercooled liquid states, does not reproduce the po-
sition of the first (negative) minimum and in any case
deviates from the MD one at shorter times than for Cs.
It seems that little effort should be made in the case of
alkali metals to modify the calculated VACF and obtain
an almost perfect agreement with the true VACF. A pos-
sible heuristic route to follow would be the addition of a
diffusivelike spectrum to account for the long-time be-
havior of the VACF. An attempt along this line will not

2655

1.0

0.5 (a)

VACF

0.0 - —=

'0-5 T T T
1.0

0.5

VACF

0.0 | LD

FIG. 2. Normalized velocity autocorrelation function for
Cs in (a) liquid phase, (b) glass. The solid line shows the func-
tion as directly calculated from the MD run and the dashed
line that calculated by Fourier transform of the normal-mode
distribution for real frequencies.

be presented here, since we prefer to discuss a different
approach, which gives in principle a deeper insight into
the microscopic dynamical processes.

Within the Mori-Zwanzig projection operator frame-
work, the correlation function of any dynamical vari-
able is shown to obey a generalized Langevin integro-
differential equation in which the crucial quantity is the
memory function M (t) whose time evolution develops in
a subspace orthogonal to that of the variables of inter-
est. If one could include all the slow-varying dynamical
variables in the set of the relevant ones, then the dy-
namics at the level of the memory function would occur
on a faster time scale and eventually a Markovian ap-
proximation could be applied. For the VACF, it is well
known that its memory function shows two distinct time
regimes, one at short times dominated by the binary colli-
sion dynamics and one at long times with a tail which ac-
counts for the important correlations set up in the system
[8]. In the past a big effort has been made in modeling
this long-time tail, and indeed the mode-mode coupling
approach has been successful in reproducing its behavior
for a large variety of simple liquids [9-11]. On the other
hand, the dynamics at short times is almost inevitably
treated on a phenomenological basis. A simple picture in
terms of isolated binary collisions is found to be unreal-
istic at liquid densities because of the lack of separation
between the two relevant time scales, namely, the time
between two successive collisions and the duration of a
collision. A theoretical method to treat correlations be-
tween collisions in the very dense phase is therefore still
lacking. Then it seems interesting to explore to what
extent the dynamics described by the stable part of the
INM spectrum can be representative of the above men-
tioned features of the VACF memory function. From the
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generalized Langevin equation one obtains the following
expression for the Laplace transform of the normalized
correlation function C(t):

A 1
C(Z)= z—{-—]\Al(z)’ (1)

M (z) being the Laplace transform of the memory func-
tion M(t). From Eq. (1) the spectrum of M(¢), i.e.,
M(w) = (1/7)Re[M(z = iw)], is given by

Re[M(z = iw)]

N

_ _ Re[C(z = iw)]
{Re[C(z = w)]}? + {Im[C(z = )]}’

(2)

where Re[C(z = iw)] and Im[C(z = iw)] are the cosine
and sine transforms of C(t), respectively. The Fourier
transform of M(w) will provide the required memory
function. This procedure has been applied to the VACF
calculated from the INM stable spectrum as well as to
the one obtained directly from MD simulation. The re-
sults for liquid and quenched states are shown in Fig. 3.
A first important observation is that the short-time dy-
namics of the MD memory function is almost perfectly
reproduced by the corresponding quantity derived from
the INM spectrum, especially for the quenched system.
This finding supports the idea that, in common with
some other cases explored so far like that of liquid water
[1], a good description of the binary contribution can be
achieved by the knowledge of the INM spectrum, that is,
it contains all the dynamical effects induced in this time
regime by correlated collisions. Furthermore, a compari-
son between results for the quenched and liquid memory
functions shows that a solidlike oscillatory behavior be-
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FIG. 3. Normalized memory function of the VACF for Cs
in (a) liquid, (b) glass phases. The solid line shows the results
from direct calculation, open triangles show those arising from
the INM analysis, and the dash-dot line gives the result from
INM analysis after an w — 0 extrapolation, as described in
the text.

comes more and more evident in the quenched system.
In fact the INM memory function in this condition is in
agreement with the direct one even at intermediate times
(of the order of 1.5 ps). It is worth pointing out that the
different plateau levels of the reported memory functions
have to be ascribed to the difference between the MD
and INM memory function spectra in the low frequency
range where M(w — 0) & 1/Re[C(w — 0)]. An unphysi-
cally large peak, which arises in the INM memory func-
tion spectrum since Re[C(w — 0)] — 0, can be removed
if the first few (three) points of the spectrum are ignored
and the remaining part is extrapolated to zero, something
which leads to the memory function for the liquid shown
by the dash-dot line of Fig. 3(a). The plateau is now in
better agreement with the MD finding, at the expense of
a poorer representation of the short-time dynamics.

As far as the intermediate time regime is concerned,
the M (t) memory function derived from the INM’s for the
liquid seems to overemphasize the oscillatory behavior, as
attested by the oscillations for 1 < ¢ < 2.5 ps~! which
are stronger than those of the MD result. A quantitative
understanding of the origin of these oscillations has been
achieved from a mode-mode coupling analysis for wave
vectors around the first and second peaks of the structure
factor, where the intermediate scattering function shows
a considerable slowing down [11], and therefore the INM
results within this time window clearly underestimate the
importance of slow decay processes in the single particle
dynamics. However, it has also been pointed out that the
success of such an approach is somehow dependent on the
particular system under investigation. For liquid lead for
example, mode-mode coupling calculations were not able
to reproduce the features of the VACF memory function
(mainly the deep first minimum) [12]. It has been argued
that correlated binary collision effects set up in the short-
time regime, not included in the mode-mode coupling
approach, can be of overwhelming importance [13]. If, as
we believe, the INM analysis gives the right short-time
dynamics, a comparison between MD and INM memory
functions for liquid lead would be useful to check the
validity of this assumption.

In conclusion, we have shown that significant details
regarding single particle dynamics are comprised in the
stable part of the INM spectrum. In particular, at the
level of the first memory function of the VACF, it gives
the correct behavior in the short-time regime where cor-
related binary collision effects are assumed to be impor-
tant. This holds true in liquid and glassy states, as is
demonstrated by the present investigation. At interme-
diate times the solidlike form of the memory function is
likely to give a realistic representation of the true mem-
ory function only for the glassy state. A comparison with
the VACF data obtained for a LJ system or more compli-
cated liquids [1] shows that liquid alkali metals seem to
constitute far more adequate candidates to explore the
capabilities of the INM approach, because of the clear
experimental counterpart of the oscillatory behavior of
these functions in such systems.
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